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The dynamics of the circle map is studied in the supereritical regime where the 
map is not invertible and thus the trajectory elements are clustered on the circle. 
Existence of a simple ordering structure is established for trajectories with 
arbitrary irrational winding number. A previously developed formalism is then 
generalized to predict the trajectories when the winding number is quadratically 
irrational. Explicit results are given for a simple case. 
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1. INTRODUCTION 

In the investigation of  the behavior  of  dynamica l  systems one approach  is to 
study maps from a low-dimensional  manifold  into itself. Such a map can be 
looked upon as discrete t ime evolution of  a system Or as a Poincar6 map of  
some low-dimensional  surface transverse to a per iodic  orbit  in the phase 
space. 

One such map that  has been studied in the context of  quasiperiodic 
route to chaos is the circle map 

f ( z )  = z + ~2 --  ( k / 2 n )  sin(2nz) (1.1) 

defined on the whole real l i ne - -wh ich  is then assigned the topology of  a 
circle by identifying z with (z + 1). This map describes mot ion on a two- 

torus (c '  • e ' )  with z ,  as the n th  point  of  intersection of  the orbit  with some 
cross section of  the toroid.  A useful parameter  of  the orbit  generated by such 
a map,  starting from the point  z0, is its winding number  defined by 

co(~, k; z0) = lim 1 [ f , ( z0  ) _ z~ ] (1.2) 
n --*ct? /'/ 
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The dynamics with k = K  and k = - K  are equivalent to a simple 
reparametrization of the circle. So we shall treat k as being positive always. 
In the domain k < 1 the map is a diffeomorphism. At k -- 1 the inverse exists 
but has a cubic singularity at z = 0 (or equivalent points). In appropriate 
contexts these cases have been studied by Shenker ~I) and others. ~2'3) My 
concern in this paper is the supercritical regime k > 1 where the derivative of 
the map is less than zero for some ranges of z and thus the map is no longer 
invertible. (4,7) 

The supercriticality of the map introduces complications into the 
possible dynamical behavior of the system. For example, the trajectory is no 
longer guaranteed to be "ordered." Ordering of a trajectory with some 
winding number W means that the relative locations of the actual trajectory 
points on the circle is the same as the one when the map is just a rotation by 
W. However, Kadanoff (5) (which will henceforth be referred to as SI) 
recently isolated a subclass of such ordered trajectories even in the super- 
critical domain, and for a particular winding number, the inverse of the 
golden mean [ = ( , f 5 - -  1)/2], he showed how to make detailed predictions 
about the locations of the trajectory points by using a kind of recursive 
analysis. Three kinds of trajectories, characterized by the behavior of the 
map at the end points of the interval containing it, were considered: ones 
with (i) both ends singular (slope of the map vanishing), (ii) only one end 
singular, and (iii) neither end singular. 

This paper has four main objectives: (a) To show bow the doubly 
singular trajectory may arise in connection with the circle map. This is done 
in the latter half of Section 2.1. (b) Section 2.2 shows that the class structure 
exists for trajectories with the winding number of not only the inverse golden 
mean but any arbitrary irrational value. (c) We also show explicitly in 
Section 3 how to predict the trajectories in the simple case where the winding 
number is of the form (ppp...), where p />  2. (d) Finally Section 4 briefly 
delineates the extension to the case of any quadratically irrational number. 
The conclusion includes some remarks for the golden mean case. 

2. FORMULATION 

2.1. General 

The first half of this subsection is a brief summary of the relevant parts 
of SI just to set the context. However, it will be assumed that the reader who 
wants a detailed understanding is familiar with the contents of SI. 

Let us consider the following family of maps: 

Ro(z )  = R0(z) + ~ (2.1) 
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where 

Ro(z) = z - (--~ ) sin(2zrz) (2.2) 

For k ~< 1 all such maps are monotonic and ordering is trivially satisfied for 
any trajectory. However for k > 1 (see Fig. 1) there are sections of the map 
where the derivative is negative. There can be no elements of an ordered 
trajectory in the negative slope domain. So if there exists any ordered 
trajectory, the points in it must lie entirely in the closure of the positive slope 
domain. The existence of such trajectories, of any winding number, can 
easily be seen. 

The argument starts by substituting the negative slope sections of the 
map by flat segments in a way that preserves the periodicity condition 

f ( z  + 1 ) = f ( z )  + 1 (2.3) 

Figure 2 shows how this can be achieved. Now consider the trajectory 
starting from X 0, the left edge of the positive slope domain that remains after 
the insertion of the flat segment. No other elements of this trajectory can fall 
in the closure of the flat segment if the winding number has to be irrational. 
Trajectory of any winding number can be generated by choosing X2 suitably 
and ordering is guaranteed since the new map is monotonic. This flattened 

R (z/ 

J.O- 

1 . . . . . . . . . . . . . . . . .  ~ 0.5 g-  1.0 
~-Z 

Fig. 1. Elements of an ordered trajectory cannot fall in the negative slope region, marked by 
crossed vertical bars (or shifted by an arbitrary integer). 
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Fig. 2. Monotonizing the map in a way such that the allowed domain will have a positive 
nonvanishing derivative everywhere. 

map is different from the original map only over the open set containing the 
flat regions--which, however, has no trajectory points in it anyway. So the 
trajectories belong to the original map as well. 

For trajectories having irrational winding number the inverse is well 
defined and thus one can construct zj for negative j values. In addition one 
can start with the point X~, the right edge of the allowed positive slope 
domain, and construct yet another trajectory. To get the relationship between 
these two trajectories, let X s, and Xj stand for the fractional parts of zj and z j, 
respectively. For any real z, {z}, the fractional part of z, is defined by {z} --- 
( z -  greatest integer less than z) and thus defines the location of z on the 
circle. The Xj and X~ obey the following conditions: 

(a) all elements fall into [X0,X~]; 

(b) forj>O,X~=Xj; 
(e) for j < O, Xj <Xj ;  

(d) i f j  < 0 [Xj, Xj] is a forbidden region; 

(e) if j r  a k the relative ordering of Xj and X~ is the same as that of {wj} 
and {wk} (w is the winding number). 

From Figure 2 one can see that the allowed positve slope domain can 
be categorized into two classes depending on how the flat segment is inserted 
into the map: 
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(i) The general case: where the derivative of the map is nonvanishing 
and positive everywhere (outside the flat interval), including both ends of the 
interval (as illustrated in Figure 2). 

(iii) The two special cases: where the derivative vanishes at the left or 
the right end of the nonflat interval but nowhere else. Figures 3 and 4 
illustrate these two situations. 

However, there is one more possibility beyond the situations discussed 
above. For k > 1 the map 

Ro(z) = z -- (--~n ) sin(27~z) 

has two families of critical points (where the derivative vanishes) at (Fig. 1) 

z = )~• + integers (2.4) 

where 
cos(2zr)7• = 1/k (2.5) 

Choose )7+ to be the point of local minima in the range [0, 1 ]. Now choose 
k such that 

( - ~ - )  sin(2~r)~+) -- J~+ = (M + 1)/2 (2.6) 

Ro z) 

/ 
/ 
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I "-Z 
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Fig. 3. The monotonized map is quadratic at the left end and linear at the right end of the 
allowed domain. 
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Fig. 4. 

R~o(z) 

1.0 / i  "\\\\ 

\ / !  
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\ / /  
\ / 

/ \'~/ 
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Here the monoton ized  map  is l inear  at the left end and quadra t i c  at the r ight  end of 

the a l lowed domain.  

where M belongs to the set of nonnegative integers. Equations (2.5) and (2.6) 
have solutions for all such values of M. Now the height of the local maxima 
in [0, 1] is 

R0(R_) = )(_ - ( ~ - )  sin(2~)7_ ) (2.7) 

and the height of the local minima in the range [2 + M, 3 + M] is 

R0(J~ + + 2 + M) = 2 + M + Ro(X+) (2.8) 

Now since 27 = 1 --2~+ notice that these two heights become identical when 
Eq. (2.6) is satisfied. Figure 5, which is a plot of the map Ro(z ) [and R;(z)] 
with a special value of k (-~4.604...) satisfying both (2.5) and (2.6) for 
M = 0, illustrates this situation. In general the implication is that the height 
of the graph representing the map at the local maxima in [0, 1] is the same 
as the height of the local minima in [2 + M, 3 + M]. As a result we can now 
insert a flat segment between these two points and extend this process so that 
the new map satisfies 

R;(z + M + 2) = R~)(z) + (M + 2) (2.9) 

The periodicity of this map R~ is ( M +  2) rather than 1. By trivial 
extensions of the proofs given in SI it is possible to show that the winding 
number for this new family of maps 

R'~(z) = R~(z) + S~ 
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R'0(z) 
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Fig. 5. 
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Example of how doubly singular trajectory can be generated. The periodicity of the 
modified map is 2. 

is independent of the initial point and a continuous, monotonically 
nondecreasing function of 12. Also since now w(12 + M +  2 ) =  
w(12) + ( M +  2), w(12) takes all possible values. Similarly the proof for 
ordering also goes through. 

Just as in the two cases discussed at the beginning one can construct 
two trajectories starting from the left and the right ends of any connected 
allowed domain and all the earlier statements regarding the locations of the 
trajectory points continue to be valid. We have thus generated a new class of 
trajectories--since the derivative is now always positive but goes to zero at 
both ends--unlike the two cases discussed earlier. 

2.2. Ordering Structure for Arbitrary Irrational Winding Number 

An important step towards calculating the locations of the trajectory 
points for a nontrivial map is to identify the grouping pattern in it. Now 
because of ordering this reduces to the problem of recognizing the pattern for 
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pure rotation with the same winding number, namely, to see how the points 
{wn} (where n is integral) are grouped in the interval [0, 1]. We shall 
consider only positive irrational numbers less than one. A trajectory with a 
winding number that can be obtained by adding an integer to such a number 
is trivially related to the original one. Now any irrational number less than 
one can be written as 

1 
w - -  

al + 1 

Ct 2 + 1 ( 2 . 1 0 )  

a 3 + . . .  

where the ai's (i = 1, 2, 3,...) are positive integers. A more compact  notation 
is 

w = (a I a 2 a 3 ...) 

To classify n's according to the fractional part of wn we introduce the 
following optimal sequence of  rational approximations to w. T h e j t h  member 
( j =  1, 2, 3,...) of the sequence is NJKj, where N I = 0 ,  N z =  1, K l =  1, 
K 2 - - - -  a l ,  and 

Nj+l=ajNj+Nj-11 for j > / 2  (2.11) 
Kj+I ajKj+Kj 1 

Any arbitrary positive (>/1) integer N can uniquely be represented as 

N =  ~ fln(N)Kn (2.12) 
n = l  

where fl,(N) are subject to the following restrictions: 

(i) O<~fll(N)<~ (a 1 -- 1) 

(ii) O<~fln(N)<~a,, for n>~2 

(iii) f l ,=O if fln+l =an+~ 

c(N), the smallest value of n such that fl,(N) ~ 0 is called the class of  N and 
flc(N)(N) is called the subclass of  N. N is said to belong to the group (c(N), 
flc(N)(N)). It turns out that the class and the subclass determines the grouping 
of the elements {wN}. To see it define A n = WKn-N,,  so that A n > 0 for n 
odd or n even and IAnl ~ 0 as n ~ oo. One also gets 

An+ 1 = anAn + A,,_ 1 (2.13) 



Supercritical Ordered Trajectories 393  

X,I-- 
j , , , ; ; '  , ,  , ,  , ,  , ,  , ,  , ,  , ,  , ,  . , ,  

- -  , I l, 15 3 20 8 13 I 186 II , 16 4 9 , 14 2 19 I, 1121 
I I I I I I I I 

G R O U P  ~ _,o4_ ~ .~ , -  - , -  

L I M I T S =  I I I -~ = = I 

x_tz x_t x_ z x_ 1 x_ 3 ~ x-17x-zs 
Group (3.1) (3.2) (l.J} {2.2} (2.11 (4.21 (4.1} 

Group structure for the trivial rotation map with the winding number of 
w(2) = (,/2 - -  1). 

Fig. 6. 

Now 

1 I / ' / = 1  

By employing the restrictions of fl, as mentioned earlier one gets, after Some 
algebra, the following results (see Fig. 6). All elements {wN} with N 
belonging to a specific group densely cover a continuous interval. Even class 
index increases from the center to the right whereas within a given even 
class, the subclass index increases from right to left. For odd classes 
everything is reversed. Every group is bounded at the ends by some negative 
N element of the trajectory. Table I summarizes the results, showing the 
group limits as well as the negative elements that bound them. Figure 6 
illustrates the results for the case where w = (22222...). 

The basic reason why this analysis of grouping pattern is useful is that 
for the supercritical case all the points within a given group will be tighly 
bunched together leaving wide gaps between adjacent groups. As a result all 
the points within a given group will be assigned a single coordinate and it 
will be this coordinate that we shall predict. We shall do it explicitly in the 
next section for the simple case w = (ppp...) for p />  2. This is simple in the 
sense that it is periodic right from the beginning and has periodicity one. 
Hints as to how the analysis can be extended to the cases where these 
restrictions are removed are given in Section 4. Notice that in the next 
section P;'s have replaced K[s.  

3.  R E C U R S I V E  A N A L Y S I S  F O R  T H E  W I N D I N G  
N U M B E R  (pppp...) (p >I 2 )  

3 . 1 .  F o r m u l a t i o n  

We start with the following two basic observations: 

(a) All the elements in a group are tightly bunched together. 
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(b) If a />  3 then any two points in the group G(a, fl) will have the 
same group history over the next ( P , ~ - I -  1) steps and (P ,~ -  1) steps for 
fl = p and 1 ~< fl ~< (p - 1), respectively. And this group history is the same 
as that of the corresponding number of  iterates of z 0 (or X 0 or X;).  

In the course of (Pc -- 1) iterations of  z 0 it is Pc - i  times in each of the 
subclasses of class I for 1 ~ l~< (c - 1). If b(~,/3) is the derivative of the map 
in group G(a, fl) then let us define 

C--1 

De = ~ I~"(~,mhPc-~ for c/> 2 (3.1) 
4 = 1  13 

Notice that D~ is just the product of the derivatives along the trajectory and 
hence is essentially a sensitivity factor that determines how far two initially 
close points in group G(a,~) will get separated after the iteration process. 
Also define D1 = 1 for later notational convenience. 

The recursion relation that D c satisfies is 

Dc+,=D,D c l[~s b(c,s)] for c />3  (3.2) 

With the definition H c = [U[s b(c,s ) this becomes 

De+ 1 = D~Dc_ 1H~ (3.3) 

Now set the notations 

y ( 2 m  + 1) = {Zo~p2 m +1 } - -  x O  = Y o ; P  2m +1 - -  X 0  ( 3 . 4 )  

and 

yox( m _ X t _ , - -  0 - -  {Zo~P2m} - -  X o  - -  X ~ P 2 m  ( 3 . 5 )  

which are just the distances of the groups (2m + 1, a)  and (2m, a) from X 0 
and X~, the left and right ends of the allowed interval. 

Let 

Also define 

Q ( 2 m + l )  
ol 

and 

~ ( 2 m +  1) = j ~ ( X o t P 2 m + l )  - -  . R ( X o )  (3.6) 

= R P 2 m + l ( X a P 2 m + l ) - - R P 2 m ~ l ( X o )  f o r  l ~ < a ~ < ( p - 1 )  (3.7) 

Q~2m+ 1) = R P 2 m ( X p P 2 m + l  ) __ R P 2 m ( X o )  ( 3 , 8 )  
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From our observations about the group history of  iterations 
definitions made earlier one sees that for 1 ~< a ~< (p  - 1) 

Q( 2m+ l) ~ o ( 2 m +  I ) / 3  
Go~ x-" 2m + 1 

where use has been made of  a linear analysis. Also  

Q(2m+ 1) y ( 2 m  + 1) __ y ( 2 m +  1) 
oL z ~ L ( a + l )  ~ 1  

and the 

(3.9) 

(3.10) 

N o w  if we make use of the assumption that the groups converge very fast to 
the ends, y(2m+ 1) - v(Zm+ 1) .L(aq_ 1) >~> a 1 and thus 

8 ( 2 m + 1 ) D  O (zm+l)  = X  (2m+l)  for 1 ~ a ~< (p- -  1) (3.11) a 2m+l  ~ x..t~ (re+ 1) 

Similarly 

( 2 m + 1 ) O 2 m  ~-- O (2m+ 1) v(2m) (3.12) 
p :r ~ =1 

For even classes we fol low an identical procedure and thus define 

~(2m) ,~ =- R(X6) - -  R(X,~2,~ ) (3.13) 

Q ~ m ) = R P 2 m ( X ~ ) - R P 2 m ( X  ~ f o r  l ~ < a ~ < ( p -  1)  ( 3 . 1 4 )  
k olP2m) 

and 

Q ( 2 m ) - R P 2 m  l ( S " ~ - R e 2 m  l ( X  ~ (3.15) 
p - -  k O) "~ pP2m ] 

And now as above one gets 

/~a(2m)/3~z,,, = ~---ao(2m) = ~t (a+l)V(2m) f o r  1 ~< a ~< (p -- 1) (3.16) 

and 
~(2m)/3 ~-. Q(2m)~__  x~2 rn -1 )  ( 3 . 1 7 )  

p ~ 2 m -  1 

In order to calculate the widths of  the groups note that 

m X E m , o  z z X "  [P2rn+ 1- (o~-- 1)P2rn] - -  X [P2m+l aP2rn] (3.18) 

For a = p this becomes  

A X 2 m  p - X '  (3.19) , - -  _ [P2m+P2m_l] - -  X p2m_l  

N o w  iterate the ends of  the group P2m 1 times. Since the groups are very 
tightly bunched once again linear analysis is applicable and we get 

- -  X ! _ NO = ~((2m + 1) (3.20) A X 2 m , p b ( 2 m , p ) D 2 m - 1  - -  --P2rn --17 
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where we employed the facts that X'v2,, constitutes one boundary of the 
group (2m + 1, p) and that the width of a group is very small compared to 
its distance from the appropriate end. 

For 1 K a ~< (p - 1), to get the group width we carry out the iteration 
P2,n times to get 

'dX2m,a b (2m,a) D 2m = AX2m,(o: + 2) (3.21) 

Thus one can calculate the width of a group from the width of the next 
higher group in the same class. 

Analogous analysis applies to the groups with odd class. One gets 

AX(2m+ 2),pb(zm+ l),pD2m = y p ( 2 m + 2 )  (3.22) 

and 

zJY(2m+2),o:b(2m+2),o:O2m+l = z J X ( 2 m +  l ) , ( a +  1) (3.23) 

Equations (3.2), (3.11), (3.12), (3.16), and (3.17), along with the 
definitions of the variables involved in these equations, incorporate all the 
information that is needed for a recursive analysis of the trajectory. Once 
that is done equations (3.20), (3.21), (3.22), and (3.23) can be utilized to 
calculate the group widths. 

Before we analyze the three universality classes separately we note that 
in all the three cases the map has a polynomial form at the ends. Thus, 
g~zm, = 0[y2m]k,, and c~ 2m+l) =O[x~2m+2)] k2. F o r  the quadratic end ki= 2 
(i = 1 and/or 2) and for the linear end ki = 1 (i = 1 and/or 2). This implies 
that 

b(zm,~ ) y~2m) = kl e~zm) and h 1F-(2m+ 1) /,. t~(2m+ 1) 
u ((2m + 2 ) , a  ).,J. a = , ~ 2 ~ a  

So from Eqs. (3.17) and (3.20) 

AXe,.,. X~ ~+') 

which, ignoring kl, is just the ratio of the distances of two neighboring odd 
class groups from the left end. Similarly 

and 

y~zm) kl v(2m) 
I (oL+l)  

AX(2m+l),p - y ( 2 m  + 2) z ] Y ( 2 m  + 1),or / ] Y ( 2 m +  1 ) , ( a +  1) 

yp(2m+ 1) k2 y~2m) , j ( ( 2 m +  l) - -  / r  Jr r(2m-b 1) 
--oL ~ 2  ~L (cr + 1) 
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The important implication of this last group of results is the following: 
if the analysis of the trajectory points shows that the groups indeed converge 
to the respective ends very fast that also ensures the validity of the other 
basic assumption that the width of a group is very small compared to its 
distance from the relevant end. 

This also shows that, asymptotically, at the linear end this ratio of the 
group width to the group location is the same for all groups within a given 
class. However, at the quadratic end this ratio falls geometrically (by a 
factor of 2 with each group) with group index decreasing. 

3.2. Results for the Three Classes 

(a) Generic Case No Extrema. 
ends 

Since the map is linear at both 

and 

lnDzm+l = - l n b  4- A + 60 -(2m+ 1) 4- A _ ( - ~ )  2m+l (3.27) 

Here A+ and A are nonuniversal with A+ > 0 which ensures that the 
groups converge to the ends. 

From this finding out the group locations is just a matter of some 
tedious algebra. The results are 

In x~m+l) = 00 - -A +[(1 + co) + (p - a ) ] o 9  -~2m+!) 

--A [ ( 1 - - 1 ) - - ( p - - a ) ] t n  ~2m+1) (3.28) 

bc, s ~ b for c odd 

b '  for c even 

Then the recursion relation (3.2) becomes 

In Dzm + 1 : PIn D2m 4- In O2m_ 1 4- p In b '  (3.24) 

and 

In D2~+2 = P In  Ozm + 1 4- In Ozr n 4- p In b (3.25) 

The solution to Eqs. (3.24) and (3.25) can immediately be seen to be (6) 

In Dz~ = - l n  b'  + A + (.o -2m 4- A _ ( - - o 9 )  2m (3.26) 
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and 

be~176 ] 
lnY~Zm)=an\ b' / - A + [ ( l + a ~ ) + ( P - a ) ] c ~  2m 

--A_ [ ( 1 - 1 )  + (p-a)] ~ 2m (3.29) 

where 0 o is nonuniversal again. Thus this universality class is characterized 
by three free parameters--0 o, A +, and A_.  

and 

{b) Both Ends Quadratic. For large m 

~(2m+ 1) __~ 

21 

b(2m+ 1 ,,3 -+ / ~  

e~2m, +[r~2m'] 2 
~' L ~2 J 

[2Y~ m' ] 
b~,~-~ t ~ J  

Incorporating these into Eqs. (3.1l), (3.12), (3.16), and (3.17) one gets 

1 2 
b(2m+ 1),(o~+ 1) = 7b(2m+l),aD2m+l (3.30) 

= (21/222) (3.31) b2m, 1 2 2 2 b(2m+ l),pOzm 

b2m,(,~+ 1) = ~b~m,c~O2m ( 3 . 32 )  

and 

b(Em-1),~ (2~/22~) 2 = b2m,pDim-  1 ( 3 . 33 )  

Recursively applying (3.30) and (3.32) to eliminate all be, . for 2 ~ a ~< 
( p -  l) we get 

= m'~2P-1 lh2P-~ (3.34) b(2m+l).p (Dam+l / - )  U(2m+ 1),1 

and 

b2m,p (D2m/2) 2p-1-1 ~-~ = b2m,1 ( 3 . 35 )  ~ 

822/37/3 4 9 
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Notice that the basic goal of  the algebra involved is to extract a recursion 
relation among variables of  a given type only, let us say b~,~, where a is 
fixed. To achieve this elimination of variables we calculate, using Eqs. 
( 3 . 3 0 ) - ( 3 . 3 3 ) ,  Hzm and Hzm + 1 tO be given by 

b2m,p 
(3.36) 

H2m = (D2m/2)p-1 b2m, 1 

and 

b~2m + l ) ,p  

H2m+l = (Dzm+jZ)p-lb(Em+~),l 
(3.37) 

Now just substitute the expressions for H2m and H2m+l from (3.36) and 
(3.37) in the recursion relation (3.3) to get 

Ozm+ zb(zm+ l),l = 4POzmb(zm 1),1 (3.38) 

and 

D2m+ 3b(2m+ 2),1 = 4PD2m+ lb2m,1 (3.39) 

The next step is to cyclically use (3.30)-(3.33) to get a relation between b~,~ 
and b(c+ 2),1 in terms of )~1, "~2 and the D 's  only. Thus we get 

b(2m_l), 1 f ( 21 ,22 ,  "~n n2~+l-2n22p-2~+'h 22~ (3.40) P / ~ 2 m - l ~ 2 m  ~ 2 m + 1  ~(2m+ l),1 

and 

bzm 1 = g(21,)1,2, , , ~n  nz~ 2n22P 2~+lhz2P (3.41) , k"l~2m~2m+l ~ 2 m + 2  U(2m+ 2),1 

Here f and g are functions that depend only on the variables within the 
parentheses. So the final step towards eliminating the model-dependent 
parameters  ~,1,22 and the D 's  is simply to use (3.40) and (3.41) for two 
consecutive values of m and the fact that the ratio of D C to Dc+ 2 can be 
written in terms of p and the ratio of  b(c_,),l t o  b ( c + l ) A  only from 
Eqs. (3.38) and (3.39). Thus we finally get the desired recursion relation: 

p(22p - 1) In 4 

= - In be, 1 - (2 p + I -  1) In b ( c + l ) A  - -  (22; - 2 p+l - -  1) In b ( c + 2 ) ,  1 

+ (22p + 2 p+~ - 1) In b(~+3), 1 + ( 22p  - -  2 p+~) In b(c+4),1 

- 2 z; In b(c+ 5), 1 (3.42) 
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To get the solution for the homogeneous version (just put the left-hand side 
equal to zero) of this linear inhomogeneous difference equation put 
In be, 1 = 02 c. Substituting into (3.42) the eigenvalue equation is found to be 

(2 - 1)2(2 + 1)(2 + 1/2P) 2 = 0 (3.43) 

Thus the homogeneous solution is 

In bc, 1 = (01 + 02 c) + 03(-1) c q- (04 q- 05c)(-1/2P) r (3.44) 

For the inhomogeneous solution try 

In br = c20 (3.45) 

One finds that (3.45) solves (3.42) with 

p(22p -- 1) In 2 
0 - 2(i + 2P) 2 (3.46) 

The full solution to (3.42) is just the sum of the homogeneous and the 
inhomogeneous parts: 

In be, I = (01 + 02c) + 03(-1) ~ + (04 + 05c) - ~ 7  

p(22p - 1) In 2 
e 2 (3.47) 

2(1 + 2P) 2 

Since for large c the quadratic term (which has no free parameters in it) 
is the dominant one, all the free parameters are unrestricted. Once b~,~ has 
been found out, deriving the explicit expression for bc,~ for 2 ~< a ~< p needs 
only the knowledge of D~ which satisfies the recursion relation 

Dcb{c_l),l = 4PDc_ 2b(c_ 3),~ (3.48) 

the solution to which is trivially 

In D C = - In  b~_1),1 + ep In 2 + ~ (3.49) 

where { is another arbitrary constant. If in (3.47) we ignore the third term, 
which dies out with e increasing, direct substitution shows that 

ep ln4  
ln(bc,,Jb~,~) = (2 ~ - ~ -  1) (i + 2") + ~ + 02 + 203(-i)  c 

p(22~-  1) In 2] 
- In 2 -~ 2(1 + 2P) 2 1 (3.50) 
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Since the dominant term is linear in c, positive for all 2 ~< a ~< p, and 
increases with a we are guaranteed that within a given class, the subclasses 
indeed converge to the appropriate ends with the subclass index going from p 
to 1. 

(e} One End Quadratic. 
left end of the map within the allowed interval is quadratic. 

Because of the stated behavior of the map, for large m, 

~2m+ 1) ____~ [X~2,,n+ 1)/~]2 

e(2m) + by(fire) 
b(2m + 1),~ -~ [ 2 X ~  2m+ 1)/~ 21 

b2,n, ~ ~ b 

Analogous to Eqs. (3.30)-(3.33) we have now 

b(2m+ , ) , ( a +  ,) = (Dzm+l/2)b~2m+l),a 

yZm) (22/4)Dzmb~zm+l) p 

y(Zm) (2m) (,~+1) = (bDzm)Y,~ 

and 

We shall treat only the situation where the 

(3.51) 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

(22/2)b(2m-1),1 = bY(p 2m) D2m - 1  (3.58) 

Once again, as in the last case, the algebra proceeds in quite a similar 
way with the goal of eliminating variables so as to obtain a recursion 
relation among variables of a given type only. Hence we do not produce the 
details here. The recursion relation that we get as a result is 

( 2 ; -  1)p21n2=lnb(2m_3),l  - [ (2 ; - -  1)p+2+2P]lnb(2m_~) , l  (3.59) 

+ [p(2 p -  1 ) +  1 + 2 p+I] lnb(2m+l),1-2;lnb(2m+3),1 

the solution to which, in the way described earlier, can be seen to be 

In b(2m+ 1),1 : a q 
(2m + 1)p In 2 

+ a l X  T + a2x'~ (3.60) 

where X 1 and X 2 are the greater than one and the less than one roots of the 
quadratic equation 

2Px 2 -  [p(2;  -- 1 ) +  1 + 2 P ] X +  1 = 0 (3.61) 
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Here a 1 < 0 but otherwise free and a and a 2 are unrestricted free 
parameters. We shall now show (instead of giving an explicit analytic form) 
that groups within a given class have the right convergence behavior. With 
the help of some algebra that we have not shown here we can write In D2m+l 
a s  

1 2 p 
l n D 2 m + l = l n 2 - f  (2 p -  1~ lnb(2m-a)'l 2 p -  1 lnb(2m+l)'l (3.62) 

A recursive application of (3.55) results in 

I n  b(2 m + ~),,~ = (2 " -  l _ 1) In D2m + 1 - -  ( 2 " -  1 _ 1) in 2 + 2 " -  1 In b(2 m + 1), 1 

(3.63) 

Now just substitute the expression for In D2m+l from (3.62) into (3.63) to get 
the desired result, which is 

2 ~ - l -  1 
ln[b(2m+l)'a/b(zm+l)'l] = \ -~-----1 ") ln[b(zm-1)'I/b(zm+l)']] (3.64) 

Since b(zm_l),l >b(2rn+]), ] [for a given subclass, higher classes are 
closer to the end], for a >/2 the right-hand side is positive and an increasing 
function of a. This implies that b(zm+l),a is greater than b(zrn+l), 1 for a /> 2 
and is a monotonically increasing function of a--which is what we want. 

For the even class groups we have the following result: 

y~2m) ~4mpexp [~i aiXm(Xi2P-1)/(Xi(2P-1)) ] (3.65) 

The expressions for the even class groups with subclass index other than one 
are involved. But it is fairly trivial to show that they have all the expected 
ordering and convergence properties. 

4, GENERALIZATION TO THE CASE OF ARBITRARY 
QUADRATIC IRRATIONAL 

The essential ingredients of our analysis in Section 3 were Eqs. (3.11), 
(3.12), (3.16), and (3.17) since they determine the group locations. And then 
Eqs. (3.20), (3.21), (3.22), and (3.23) give the group widths. A careful 
examination of the formalism developed there shows that this whole 
procedure goes through only if one generalizes the definition of D c to be the 
sensitivity factor: 

K c -- 1 
De= [I b(,~,9)(i ) (4.1) 

i=1 
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where (a, fl)(i) stands for the group containing the ith iterate of z o. The 
recursion relation changes to 

r ] 
Oc+l~-DacDc_l [~ss b(c,s) (4.2) 

Definition (3.1) and Eq. (3.2) are just special cases of (4.1) and (4.2), 
respectively. So the set of observations that groups converge very fast to the 
respective end and that the width of a group is much smaller than its 
distance from the appropriate end allow us to write down all the equations 
necessary for the most general case. However, the obvious reason why we 
were able, in Section 3, to solve them explicitly is that the continued fraction 
representation (pppp...) has a finite (one in this case) periodicity and thus 
we have a finite set of difference equations. For a general quadratic irrational 
we shall have a similar situation. Thus we have in principle a way to 
approach the problem, although the task of solving the finite difference 
equations remains. 

5. GENERAL REMARKS 

The analysis as presented here has been self-consistent in the sense that 
the input of observations regarding the locations and the widths of the 
groups, which were made on the basis of numerical data and plausible 
guesses, is consistent with the predictions of the analysis. It would be 
desirable to be able to prove this input analytically. It may be pointed out 
here that the analysis in SI for the winding number (111...) contains a 
fundamental mistake. The minimum number of steps for which the class 
history of two points in the class c will be identical is (Fc_ 1 - 1) and not 
(F c - 1) as noted there. This renders much of the quantitative results as 
obtained there incorrect. 

We have numerical data that are extensive for the (1111 ...) case and 
convincing but not good enough for the (222...) case. The agreement 
between the data and our analytic predictions is excellent and barely 
convincing, respectively. The reason why it is difficult to obtain precise 
enough numerical data for the (ppp...) case with p > / 2  is that the 
convergence of the groups to the ends is extremely fast. Even for p = 2 only, 
the quadrupole precision mode generates data that are barely convincing 
because the predictions hold only for large classes and error propagation 
makes the data meaningless at that level. 
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